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SUMMARY

Breastmilk contains a complex community of bacte-

ria that may help seed the infant gut microbiota. The

composition and determinants of milk microbiota are

poorly understood. Among 393 mother-infant dyads

from the CHILD cohort, we found that milk micro-

biota at 3–4 months postpartum was dominated by

inversely correlated Proteobacteria and Firmicutes,

and exhibited discrete compositional patterns. Milk

microbiota composition and diversity were associ-

ated with maternal factors (BMI, parity, and mode

of delivery), breastfeeding practices, and other milk

components in a sex-specific manner. Causal

modeling identified mode of breastfeeding as a key

determinant of milk microbiota composition. Specif-

ically, providing pumped breastmilk was consistently

associated with multiple microbiota parameters

including enrichment of potential pathogens and

depletion of bifidobacteria. Further, these data sup-

port the retrograde inoculation hypothesis, whereby

the infant oral cavity impacts the milk microbiota.

Collectively, these results identify features and de-

terminants of human milk microbiota composition,

with potential implications for infant health and

development.

INTRODUCTION

Although previously considered sterile, breastmilk is now

known to contain a complex community of bacteria that helps

establish the infant gut microbiota (Parigi et al., 2015). If this

process is disrupted, the infant may develop a dysbiotic micro-

biota, causing predisposition to chronic diseases such as

allergy, asthma, and obesity (Gomez-Gallego et al., 2016).

Recent studies on human milk microbiota suggest that it might

be affected by local pathologies of the breast, mode of delivery,

antibiotics, maternal health, and gestational age (Bode et al.,

2014). However, these findings have not been reproduced in

large-scale studies, and the determinants of milk microbiota

are still mostly unknown.

Two main pathways have been proposed to explain the

origin of milk microbiota: entero-mammary translocation of the

maternal gut microbiota and retrograde inoculation by the in-

fant’s oral microbiota (McGuire and McGuire, 2017). The fact

that colostrum collected even before the first infant feeding

already contains a microbial community (Damaceno et al.,

2017) supports the entero-mammary pathway, while the similar-

ity of infant oral microbiota to breastmilk microbiota (Bisanz

et al., 2015) supports the retrograde pathway. It is plausible

that both pathways are contributing to the bacterial content of

human milk.

Depending on the source of bacteria, different factors could

contribute to shaping the milk microbiota. Factors influencing

the mother’s gut microbiota such as obesity (Collado et al.,
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2008) or diet (Wu et al., 2011) could affect the bacteria originating

from the maternal gut, while factors influencing the infant’s mi-

crobiota (Laforest-Lapointe and Arrieta, 2017) such as mode of

delivery, older siblings, complementary feeding, and mode of

breastfeeding (directly at the breast versus pumped and bottled

breastmilk) could potentially alter the bacteria derived from the

infant’s oral cavity. Other milk components such as human

milk oligosaccharides (HMOs), milk fatty acids, hormones, im-

mune cells, and antibodies could also modulate the milk ‘‘micro-

environment’’ and create a niche constraint affecting composi-

tion of the microbial community. Additionally, factors that

could impact the overall milk composition such as circadian

rhythm (Nozad et al., 2012) and lactation stage could indirectly

affect the milk microbial community.

Studies addressing these potential determinants of milk mi-

crobiota have been limited by small sample size, low sequencing

depth, and lack of control for confounding factors. The objective

of this study was to profile the milk microbiota in a large sample

of healthy mother-infant dyads and examine the association of

maternal, infant, early-life, and milk factors with milk microbiota

composition.

RESULTS

We studied a representative subset of 393 breastfeeding dyads

from the CHILD birth cohort (Table S1). The majority were

Caucasian (74%), about half (54%) were primiparous, and a

quarter (24%) delivered by Cesarean section. The mean ± SD

duration of any breastfeeding was 13 ± 6 months and the

mean lactation stage at sample collection was 17 ± 5 weeks.

We obtained a mean of 47,710 ± 18,643 high-quality

sequencing reads per sample, compared with 46,770 ± 13,479

reads from the mock community and 627 ± 1,034 reads in

sequencing negative controls. Profiles were significantly

different by sample type, but not by sequencing runs or PCR re-

actions (Figure S1A). Sequencing contaminants (n = 173 from

9,884 total amplicon sequence variants [ASVs]) were identified

and removed using the decontam package (Davis et al., 2018);

this did not measurably affect sequencing depth (Figure S1B)

or microbiota structure (Figure S1C). We observed strong con-

sistency between the observed and expected composition of

the mock community (Figure S1D).

Milk Microbiota Is Dominated by Inversely Correlated

Proteobacteria andFirmicuteswithHigh Inter-individual

Variability

Following removal of rare taxa with <20 reads in total (Fig-

ure S1E), 18 unique phyla comprising 1,972 ASVswere detected,

with the majority of taxa detected belonging to Proteobacteria

(mean ± SD relative abundance: 67% ± 24%, range 3%–99%),

Firmicutes (26% ± 22%, range 0.1%–91%), Actinobacteria

(4% ± 4%, range 0%–61%), and Bacteroidetes (1% ± 3%, range

0%–44%) (Figure 1A). Proteobacteria and Firmicutes relative

abundances were inversely correlated (Pearson r = �0.97, p <

0.001). At the genus level (Table S2), the most abundant taxa

were Streptococcus (16% ± 17%), Ralstonia (5% ± 3%), and

Staphylococcus (5% ± 11%). We defined core milk microbiota

as ASVs present in at least 95% of individuals with minimum

1% mean relative abundance (Astudillo-Garcı́a et al., 2017;

Shade and Handelsman, 2012). Overall, 12 core ASVs were

identified (Table S3); the five most abundant belonged

to unclassified Burkholderiales (6% ± 3%), Staphylococcus

(5% ± 12%), Ralstonia (5% ± 3%), unclassified Comamonada-

ceae (4% ± 3%), and Acidovorax (4% ± 2%). These and other

core ASVs were present in 100% of samples compared to

0%–20% of sequencing negative controls (Table S3).

Milk Microbiota Profiles Exhibit Discrete Compositional

Patterns

To identify potential inherent patterns in the milk microbiota,

hierarchical clustering was performed on the core microbiota

(Figure 1B). Four clusters (C1–C4) were identified (Tibshirani

et al., 2001) (Figure S2) and were predominantly separated

based on the relative abundances ofMoraxellaceae, Enterobac-

teriaceae, and Pseudomonadaceae (enriched in C1, n = 42);

Streptococcaceae, Staphylococcaceae, and Oxalobacteraceae

(C2, n = 98); Oxalobacteriaceae and Comamonadaceae (C3,

n = 161); and Streptococcaceae and Comamonadaceae (C4,

n = 92) (Figure 1C; Table S4). C1 and C2 had the lowest a

diversity, while C3 was the most diverse (Figure 1D). Clusters

were well separated on PCoA plots of the core (Figure 1E) and

overall (>0.01% mean relative abundance; Figure S2C) milk mi-

crobiota. C1 and C2 had higher heterogeneity compared to C3

and C4 (Figure S2B), suggesting they may be more enriched

with exogenously derived bacteria from maternal skin or breast

pump microbiota. Indeed, the majority of mothers in C1 (86%)

fed their infants pumped milk (indirect breastfeeding), compared

to 66%, 53%, and 48% in C2, C3, and C4, respectively

(Table S5; Figure 1F). C1 also had the highest rate of pump

versus manual expression (94%, compared to 78%–83% in

the other clusters) (Table S5).

Milk Microbiota Diversity Is Associated with Mode

of Breastfeeding, Method of Milk Expression,

and Other Maternal Factors

Overall, milk samples had a mean ± SD richness (observed

ASVs) of 147 ± 44 and diversity (inverse Simpson index) of

15.8 ± 8.7. We explored the association of a diversity with

multiple maternal and infant factors (Tables 1 and S6). In multi-

variable linear regression adjusting for infant sex, mode of

feeding, mode of delivery, and parity (number of older sib-

lings), indirect breastfeeding was independently associated

with lower milk bacterial richness (adjusted bb–18.9, 95% CI,

�27.9, �9.9, p < 0.001) and diversity (adjusted bb�2.08, 95%

CI, �3.91, �0.25, p < 0.05; Table 1). In a subset with

data on milk expression method, pump versus manual expres-

sion was associated with significantly lower bacterial richness

(bb = �39.6, 95% CI, �60.5, �18.7, p < 0.001). Within the

range of lactation that we studied (17 ± 5 weeks), we did not

detect significant associations of lactation stage with a

diversity. In addition, we found no association between

overall a diversity and mode of delivery, maternal ethnicity,

history of atopy, smoking, BMI, secretor status, HMO diver-

sity, or total HMO concentration (Table S6). There were

some notable differences when examining within-phylum a di-

versity (Figure 2). For example, while maternal BMI was not

associated with overall a diversity, it was inversely associated

with Proteobacteria diversity and positively associated with
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Firmicutes diversity. Maternal atopy and multiparity were

associated with higher Actinobacteria richness.

Milk Microbiota Composition Is Associated with

Breastfeeding Practices, Multiparity, and Other

Maternal Factors in a Sex-Specific Manner

To identify factors associated with milk microbiota composition,

we first examined the relative abundance of taxa at species

and genus levels. Among the many factors examined, only

mode of breastfeeding was associated with differential relative

abundance for a few individual taxa (Figure 5D). Gemellaceae,

Vogesella, and Nocardioides had higher relative abundances

with direct breastfeeding whereas Enterobacteriaceae and

Pseudomonas were relatively more abundant with indirect

breastfeeding. No associations were observed between individ-

ual taxa and other factors examined, including maternal secretor

status, ethnicity, atopy, parity, mode of delivery, or intrapartum

antibiotics (data not shown).

Next, we assessed associations with core milk microbiota

cluster membership (Figure 1F; Table S5). Clusters C3 and C4

had lower frequency of indirect breastfeeding compared to clus-

ters C1 and C2 while exclusive breastfeeding and primaparity

weremore frequent in cluster C1 (Table S5).Maternal age, atopy,

infant birth weight, gestational age, and intrapartum antibiotics

were not associated with cluster membership (data not shown).

Next, we explored the association of each factor with the

entire microbiota composition using redundancy analysis

(RDA; Figure 3). Consistent with the cluster analyses, breast-

feeding mode (p = 0.001) was significantly associated with the

overall composition. Several additional factors including

B

EDC

A

F

Figure 1. Milk Microbiota Profiles Are Highly Variable between Women, and Exhibit Discrete Compositional Patterns

(A) Milk microbiota profile at phylum level across samples.

(B) Hierarchical clustering of the core milk ASVs defined as present in at least 95% of samples with minimum 1% mean relative abundance; see also Figure S2.

(C) Relative abundance of dominant bacterial families in different clusters; see also Table S5.

(D) Comparison of a diversity between clusters *p < 0.05, **p < 0.001; NS, not significant.

(E) Comparison of b diversity between clusters using PERMANOVA.

(F) Prevalence of mode of breastfeeding, infant sex, mode of delivery (C/S, cesarean section; NVD, normal vaginal delivery), and parity in different clusters.

326 Cell Host & Microbe 25, 324–335, February 13, 2019



exclusive breastfeeding, lactation stage, parity, maternal BMI,

ethnicity, and infant sex were significantly associated with the

milk microbiota composition, albeit with very low redundancy

values (each accounting for <1% of the variation in the milk

microbiota). The fact that these factors were associated with

overall microbiota composition, but not with cluster member-

ship, suggests their influence on the non-core (inter-individual

variable) component of the milk microbiota. There was a trend

toward association of HMO composition with milk microbiota

(R2 = 0.055, p = 0.074) (Figure 3).

A multivariable RDA including mode of breastfeeding and

lactation stage accounted for 2.2% of variation in the milk

microbiota (p = 0.001) while additional inclusion of HMO

composition increased the total variation explained to 7.3%

(p = 0.001). Interestingly, the amount of variation explained

was considerably higher when RDA models were stratified by

infant sex (male, 13.3%, p = 0.005; female, 11.6%, p = 0.17).

Sex specificity was also observed for univariate RDA associa-

tions for mode of breastfeeding and lactation stage (higher R2

in males), as well as parity, mode of delivery, and maternal

BMI (significant in females only) in stratified analyses. The com-

bined contribution of all the factors accounted for 35.5%of vari-

ation inmales (p = 0.001) and 34.1% in female infants (p = 0.079)

(Figure 3).

Table 1. Factors Associated with Milk Microbiota a Diversity

Factor n (%)

Richness: Observed OTUs Diversity: Inverse Simpson

Univariatea Model 1b Univariatea Model 1b Model 2c

Richness

(Mean ± SD)

Crude

b (95% CI)

Adjusted

b (95% CI)

Diversity

(Mean ± SD)

Crude

b (95% CI)

Adjusted

b (95% CI)

Adjusted

b (95% CI)

Breastfeeding Mode

All direct 162

(41.9)

157.8 ± 37.0 Ref. Ref. 17.1 ± 8.2 Ref. Ref. Ref.

Some indirect 225

(58.1)

138.7 ± 46.9 �19.1

(�27.8, �10.4)f
�18.7

(�27.7, �9.64)f
14.9 ± 9.2 - 2.2

(�3.9, �0.36)e
�2.04

(�3.88, �0.20)e
�2.20

(�4.01, �0.40)e

Milk Expressiond

Manual 20

(18.8)

170.1 ± 40.0 Ref. – 15.8 ± 7.9 Ref. – –

Pump 91

(81.2)

130.5 ± 43.2 �39.6

(�60.5, �18.7)f
13.8 ± 9.0 �2.08

(�6.40, 2.25)

Mode of Delivery

Vaginal 294

(76.0)

148.5 ± 43.9 Ref. Ref. 16.3 ± 8.8 Ref. Ref. Ref.

C/S emergency 47

(12.1)

133.5 ± 47.3 �14.9

(�28.5, �1.5)e
�11.3

(�25.0, 2.5)

14.5 ± 9.2 �1.74

(�4.46, 0.99)

�1.02

(�3.81, 1.78)

�1.29

(�4.01, 1.44)

C/S elective 46

(11.9)

151.1 ± 39.0 2.6

(�11.0, 16.3)

2.5

(�11.2, 16.1)

14.2 ± 8.6 �2.09

(�4.84, 0.67)

�2.03

(�4.81, 0.76)

�1.89

(�4.65, 0.88)

Infant Sex

Female 192

(48.9)

151.0 ± 43.3 Ref. Ref. 16.7 ± 8.8 Ref. Ref. Ref.

Male 201

(51.1)

142.8 ± 43.9 �8.2

(�16.9, 0.4)

�7.3

(�16.0, 1.4)

14.9 ± 8.9 �1.81

(�3.56, �0.06)e
�1.65

(�3.43, 0.12)

�1.62

(�3.39, 0.15)

Older Siblings

No 211

(53.7)

143.7 ± 47.5 Ref. Ref. 15.2 ± 9.1 Ref. Ref. –

One 126

(32.1)

147.1 ± 39.7 3.4

(�6.3, 13.0)

�2.2

(�12.3, 7.8)

16.4 ± 8.6 1.22

(�0.74, 3.18)

0.68

(�1.37, 2.73)

Two or more 56 (14.2) 157.7 ± 35.8 13.9

(1.1, 26.8)e
7.5

(�6.0, 20.9)

16.7 ± 8.5 1.47

(�1.15, 4.08)

1.11

(�1.64, 3.85)

N = 393 dyads from the CHILD cohort. Data are presented as mean ± SD. BMI, body mass index; C/S, Caesarean section.
aAll factors showing an association (p < 0.05) on univariate analysis are shown. For other factors examined without significant associations, see Table

S6: maternal BMI, lactation stage (interquartile range 14–19 weeks), maternal age, maternal atopy, maternal secretor status (defined based on the

presence or absence of 20-FL or LNFP HMOs), maternal prenatal smoking, maternal ethnicity, milk fatty acids PC1, HMO diversity, and total HMO

concentration.
bLinear regression adjusted for breastfeeding mode, infant sex, mode of delivery, older siblings, and sample processing time; N = 381.
cLinear regression adjusted for breastfeeding mode, infant sex, mode of delivery, and sample processing time; N = 381.
dn = 111. Method of milk expression was not systematically captured but was analyzed for samples where it was noted.
ep < 0.05.
fp < 0.001.
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Structural Equation Modeling Identifies Mode of

Breastfeeding as a Key Determinant of Milk Microbiota,

and Defines Other Causal Pathways Influencing Milk

Composition

None of the results above account for the theoretical framework

of causal pathways bywhich different factors could affectmilkmi-

crobiota (Figure 4A) We performed confirmatory factor analysis

(CFA) (Kline, 2016), a variant of structural equation modeling

(SEM), to evaluate and compare different plausible frameworks

(Figures 4B and S3).Wemodeled themilk environment as a latent

(unobserved) construct with HMOs, fatty acids, insulin, and leptin

as indicators. Our variable selection in the CFAwas guided by the

current literature on proposed mechanisms of mammary gland

colonization. Variables potentially important for the retrograde

pathway are mode of delivery, infant sex, and older siblings

(factors shaping the infant microbiota), as well as mode of breast-

feeding (because indirect feeding eliminates contact with the in-

fant oral cavity). Variables potentially important for the entero-

mammary route include maternal BMI and dietary pattern, which

could be correlated with the maternal gut microbiota.

In our final model, breastfeeding mode was directly associated

withmilkmicrobiotawithb coefficient of 0.19 (p< 0.001) (Figure 4).

There was a trend in the direct association of infant sex with

milk microbiota (b = 0.09, p = 0.072), whereas no association
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Figure 2. Factors Associated with Milk Mi-

crobiota Within-Phylum a Diversity

b coefficients of univariate associations with linear

regression are visualized for observed ASVs and

inverse Simpson index for major milk microbiota

phyla. *p < 0.05, **p < 0.001.C/S, Ceasarean

section.

was detected for birth mode or maternal

BMI (b < 0.10, p > 0.05). Maternal diet

influenced maternal BMI, and BMI was

significantly associated with the milk envi-

ronment latent construct. Overall, we did

not detect a significant association be-

tween the milk environment and the milk

microbiota (b = �0.049, p = 0.45) (Figures

4, S3A, and S3B).

We assessed other plausible causal

pathways in equivalentmodels (FigureS3;

Table S7). For example, we removed the

indirect effect of BMI on milk microbiota

mediated by the milk environment (Fig-

ure S3C); however, the model was not a

good fit, suggesting that BMI both directly

and indirectly affects the milk microbiota.

Furthermore, we observed that the

effect of mode of breastfeeding on the

milk microbiota was not mediated via

the milk environment (Figure S3D). We

also incorporated some known associa-

tions such as the direct effect of diet on

milk fatty acids (Figure S3E) and potential

direct effect of HMOs on milk microbiota

(Figure S3F). Controlling for these addi-

tional associations, mode of breastfeed-

ing was the only consistent factor directly associated with the

milk microbiota composition. Overall, the CFA suggests that (1)

mode of breastfeeding directly influences the milk microbiota,

and (2) maternal diet influences BMI, which affects non-bacterial

milk components that do not directly influence milk microbiota.

Indirect Breastfeeding Is Associated with Enrichment of

Potential Pathogens and Depletion of Bifidobacteria in

Milk Microbiota

Given the consistent association of breastfeeding mode with

different milk microbiota measures using different analytical ap-

proaches (above), we conducted further analyses to explore

this relationship (Figure 5). Indirect breastfeeding was associated

with lower a (within sample) diversity and higher b (between sam-

ple) diversity (Figures 5A–5C). Using a standard ANOVA test,

several taxa were differentially abundant based on mode of

breastfeeding. Enterobacteriaceae and Enterococcaceae were

more abundant with indirect breastfeeding while Gemellaceae

and Vogesella were enriched with direct breastfeeding (FDR p <

0.05). Notably, although Enterobacteriaceae was present in

70% of samples regardless of the mode of breastfeeding, it had

a 5-fold lower mean relative abundance in direct versus indirect

breastfeeding (1.1% ± 3.5% versus 5.0% ± 13.5%, p = 0.002).

Linear discriminant analysis (Segata et al., 2011) (Figure 5D)
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identified several discriminant taxa that were not differentially

abundant in conventional analysis. For example, members of

the Actinobacteria phylum and Veillonellaceae (a member of

oral microbiota) were enriched with direct breastfeeding while

Stenotrophomonas and Pseudomonadaceae (potential opportu-

nistic pathogens) were enriched with indirect breastfeeding (Fig-

ure 5D), further suggesting that direct breastfeeding facilitates

acquisition of oral microbiota while indirect breastfeeding leads

to enrichment by environmental (pump-associated) bacteria.

We next examined association of mode of breastfeeding with

Bifidobacterium spp. as they constitute the majority of shared

taxa between mother’s milk and infant stool (Biagi et al., 2017).

We identified Bifidobacterium bifidum and B. animalis, as well

as two unclassified Bifidobacterium spp., in the milk microbiota

Figure 5. The most prevalent Bifidobacterium spp. in breastmilk

was present in 48% of direct versus 30% of indirect breastfeed-

ing (p < 0.001) (Figure 5E).

To assess whether associations with breastfeeding mode

were related to the method of milk sample collection, we per-

formed a sensitivity analysis among samples with available infor-

mation on method of milk collection (n = 111; Figure S4). Overall,

pumping versus manual expression was associated with lower

milk microbiota richness (Table 1). Stratified analyses showed

that richness was significantly lower with indirect breastfeeding

regardless of the method of sample collection (Figure S4A), sug-

gesting that feeding mode and collection mode independently

influence milk microbiota composition.

DISCUSSION

Using multiple analytic approaches to study the human milk mi-

crobiota in a general population cohort, we provide evidence

Analysis 
All Dyads 
(n=393) 

Male  
(n=201) 

Female 
(n=192) 

 Variables R2 p R2 p R2 p 
Univariable         

    Maternal BMI 0.43 * 0.54   1.02 * 
    Maternal secretor status 0.38 ~ 0.62   0.61   

    Mode of delivery 0.62   0.73   1.71 * 
    Number of older siblings 0.84 * 1.08   1.53 * 

    Child antibiotics at sample collection 0.25   0.80 ~ 0.67   
    Mother antibiotics at sample collection 0.21   0.70   0.51   

    Lactation stage 0.59 ** 0.84 ~ 0.60   

    Mode of breastfeeding (BF) 1.34 *** 2.17 *** 0.97 * 
    Exclusive breastfeeding 0.93 *** 1.38 ** 0.87 * 

    Total HMO concentration 0.31   0.50   0.60   

    HMO compositional profile 5.50 ~ 10.40   10.50   
    Milk insulin 0.32   0.69   0.50   
    Milk leptin 0.28   0.42   0.63   

    Milk fatty acid profile 7.80   15.50   15.50   
Multivariable             

Model 1 
    Mode of BF, older siblings, total HMO 

2.27 *** 3.63 *** 2.89 * 

Model 2 
    Mode of BF, lactation stage 

2.15 *** 3.58 *** 1.55 * 

Model 3 
    Mode of BF, lactation stage, HMO profile 

7.29 *** 13.25 ** 11.57   

Model 4 
    All factors in table 

18.19 ** 35.47 *** 34.11 ~ 

Figure 3. Redundancy Analysis of Associa-

tions of Maternal and Infant Factors with

Overall Milk Microbiota Composition among

393 Dyads in the CHILD Cohort

Redundancy values (R2) indicate the percent (%)

variation explained by each individual factor (in

univariate analyses) or each multivariable model.

Shading reflects magnitude of R2. Maternal age,

history of atopy, infant birth weight, gestational

age, and intrapartum antibiotics were not signifi-

cantly associated with milk microbiota composi-

tion in RDA and are not shown. BMI, body mass

index; HMO, human milk oligosaccharide. �p <

0.10, *p < 0.05, **p < 0.01, ***p < 0.001.

that its composition and diversity are

influenced by maternal factors, early life

events, breastfeeding practices, and

other milk components. To our knowl-

edge, this is among the largest studies

of human milk microbiota performed to

date, and it is the only study to apply a

multivariable causal modeling approach.

We identified four main clusters within

the milk microbiota and found that

mode of breastfeeding was significantly

associated with milk microbiota compo-

sition. Some additional factors (e.g., maternal BMI and parity)

were associated with microbiota composition in a sex-specific

manner, while others (e.g., maternal atopy and smoking) were

associated with microbiota diversity in a phylum-specific

manner. We also uniquely integrated other milk components

(e.g., HMOs and fatty acids) in our analyses. Together, these

results considerably expand upon existing knowledge about

milk microbiota, providing evidence for the importance of

breastfeeding practices, maternal factors, and potential sex

differences in the pathways determining milk microbiota

composition.

Milk Microbiota Clusters Reflect Different Sources of

Exogenous Milk Bacteria

Dominant milk bacteria in our cohort were in accordance with

previously published results (McGuire and McGuire, 2017).

Also in agreement with previous reports (Bode et al., 2014),

milk microbiota demonstrated a high degree of inter-individual

variability with only a minority of taxa shared across the study

population. Though we acknowledge that discrete clusters

might not exist within the milk microbiota (Knights et al., 2014),

we used hierarchical clustering to identify inherent patterns in

the milk microbial community, finding four main clusters. While

C1 was dominated by Enterobacteriaceae, Moraxellaceae, and

Pseudomonadaceae, C2 had the highest relative abundances

of Streptococcaceae and Staphylococcaceae as well as low

abundance of potential reagent contaminants. Given the

decreasing proportions of indirect breastfeeding as well as

pump-expressed milk from C1 to C2, it is plausible that the

clusters, at least partially, reflect a gradient of infant oral versus

environmental (e.g., breast pump apparatus biofilm) sources of

exogenous milk bacteria (Jiménez et al., 2017). In a previous
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report, three clusters were identified in the milk microbiota of

Chinese women with dominance of Streptococcaceae, Staphy-

lococcaceae, and Pseudomonadaceae defining the three clus-

ters (Li et al., 2017). Differences in the cluster-dominating spe-

cies compared to our study could be the consequence of

different clustering methods, inclusion criteria (e.g., restriction

to ‘‘core’’ taxa in our study), prevalence of key exposure vari-

ables (e.g., indirect breastfeeding), milk collection methods

(e.g., aseptic protocol with electric pump in the Chinese study),

or geographic variations in the milk microbiota. Further research

is warranted to explore the existence and biological relevance of

compositional patterns in milk microbiota.

Support for the Exogenous Sources of Milk Colonization

Our study contributes evidence to the ongoing debate

regarding the origins of milk microbiota. Two main pathways

have been proposed to explain the origin of milk microbiota: en-

tero-mammary translocation of the maternal gut microbiota and

retrograde inoculation by the infant’s oral microbiota. While it

has been hypothesized that the mammary gland may be

colonized by a complex microbial community, it has also been

suggested that milk microbiota is merely the result of contami-

nation at multiple steps of collection, processing, and storage

(Rainard, 2017). Identification of microbial communities within

BMI Micro-
biota

Milk
Envir.

Fatty
Acids Leptin HMOInsulin

BF 
Mode

Infant 
Sex

Birth
Mode

Diet
PC1

Diet
PC2

** ****** ** **

**

Milk environment
    HMOs
    Lipids
    Cytokines
    etc.

Milk 

microbiota

Maternal factors
    BMI
    Age
    Ethnicity
    Diet

Breastfeeding factors
Mode

    Exclusivity
    Time to the last feed

Maternal 

Gut microbiota

Early life factors
Mode of delivery

    Antibiotics
    Older siblings

 

Infant factors
    Sex
    Birth weight

A

B

Figure 4. Theoretical Framework and

Causal Modeling of Maternal and Infant

Factors Influencing the Milk Microbiota

(A) Theoretical framework of how different factors

are associated with milk microbiota composition.

Maternal factors are more likely to indirectly in-

fluence the milk microbiota via modulating other

milk components or the maternal gut microbiota,

while early-life and infant factors could more

directly shape the milk microbiota by influencing

the infant oral microbiota.

(B) Mode of breastfeeding is significantly associ-

ated with themilk microbiota in structural equation

modeling. Standardized b coefficients are re-

ported. BMI, maternal body mass index; CFI,

comparative fix index; CI, confidence interval;

RSMEA, root-mean-square error of approxima-

tion; SRMR, standardized root-mean residuals;

*p < 0.05, **p < 0.01. Green, positive; red, nega-

tive.

See also Figure S3 and Table S7.

the breast tissue of non-lactating women

suggests that the mammary gland is

indeed colonized (Urbaniak et al.,

2014), and recent data confirm that bac-

teria are present in human milk collected

under aseptic conditions (Sakwinska

et al., 2016). However, the same study

found a higher abundance and different

composition of microbiota in milk

collected using a non-aseptic protocol,

indicating a substantial contribution

from skin microbiota or other externally

acquired bacteria. The ‘‘retrograde inoc-

ulation’’ hypothesis is also supported by

the observation that bacterial load gradually decreases over the

course of each feed (West et al., 1979).

Our study provides intriguing evidence to further support the

retrograde hypothesis, showing that indirect breastfeeding

(defined as at least one serving of pumped milk in the preced-

ing 2 weeks) was significantly associated with milk microbiota

diversity and composition. This striking association was

consistently replicated using different analytical methods

(multivariable regression, redundancy analysis, discriminant

analysis, and structural equation modeling), providing confi-

dence that these observed associations could be causal.

Our results suggest that both the act of pumping and the

lack of contact with the infant oral cavity may independently

influence the milk microbiota, although we cannot definitively

distinguish between these related factors, nor identify the

sources of the exogenously derived bacteria in the expressed

breast milk. Nevertheless, based on lower richness associated

with indirect versus direct breastfeeding in both manually ex-

pressed and pumped milk samples, we speculate that expo-

sure to the infant oral cavity has a persistent impact on

shaping the milk microbiota community. Further research is

needed to characterize this ‘‘retrograde inoculation’’ process,

and to explore the possible impact of pumping on the micro-

biota of expressed milk.
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Mechanistic Explanation for a Clinical Observation

Our current findings on indirect breastfeeding also suggest a

possible explanation for our recent observation that infants fed

pumpedmilk are at increased risk for pediatric asthma compared

to those fed exclusively at the breast (Klopp et al., 2017). In the

current study of milk microbiota, we found that one Bifidobacte-

rium spp. existed in milk at relatively high prevalence and was

significantly depleted with indirect breastfeeding. This could

have important implications for infant immune development and

asthma risk because Bifidobacterium spp. constitute the majority

of shared taxa betweenmother’s milk and infant stool (Biagi et al.,

2017), which is typically dominated by Bifidobacterium spp.

(Asnicar et al., 2017; Biagi et al., 2017). Gut microbiota is crucial

in the development and education of the infant immune system

(Li et al., 2014), and disruption of gut microbiota in the first few

months of life is associated with atopy and asthma later in child-

hood (Azad et al., 2015; Bridgman et al., 2016). We acknowledge

that bifidobacteria may be underrepresented in our study due to

known biases against detecting this species using 16S rRNA

gene sequencing (Walker et al., 2015); however, the lower preva-

lence of Bifidobacterium spp. associated with indirect breast-

feeding among the uniformly processed samples in our study

suggests that modifiable factors could indeed impact the propor-

tions of this bacterium in milk. We also found that Enterobacteri-

aceae and potential pathogens were enriched with indirect

breastfeeding, consistent with culture-dependent studies where

pump expression increased the abundance of Enterobacteri-

aceae and other gram-negative bacteria in milk (Jiménez et al.,

2017). Increased exposure to potential pathogens in breastmilk

could pose a risk of respiratory infection in the infant, representing

Figure 5. Milk Microbiota Is Associated with Mode of Breastfeeding

(A) a diversity.

(B) Homogeneity of dispersion.

(C) b diversity.

(D) Discriminant analysis of taxa enrichment.

(E) Prevalence of Bifidobacterium species.

See also Figure S4.
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another possible mechanism for increasing asthma risk (Beigel-

man and Bacharier, 2016). Further research is warranted to

explore the impact of pump expression and indirect breastfeed-

ing on milk microbiota and its subsequent effect on infant gut mi-

crobiota, immune development, and related health outcomes.

Sex-Specific Variations in Milk Microbiota

We observed intriguing differences in milk microbiota a diversity

and overall community structure according to infant sex. There

was a trend in direct association of infant sex withmilk microbiota

in our SEM analysis, and we also found sex-dependent associa-

tions of breastfeeding mode, exclusivity, and lactation stage

(higher R2 in males), as well as parity, mode of delivery, and

maternal BMI (significant in females only) with milk microbiota in

RDA. Lack of sex-stratified analysis could potentially explain

why previous studies have reported inconclusive results on the

association of the above-mentioned factors with milk microbiota.

The mechanism for the observed sex differences in milk micro-

biota remains to be determined. Sex differences in gut microbiota

have been reported, and are usually attributed to hormonal differ-

ences between male and female hosts (Markle et al., 2013). While

the host is always female in the case of milk microbiota, it is sus-

pected (as described above) that milk microbiota is partially

derived from the infant oral cavity, whichmay differ inmale versus

female infants (Takeshita et al., 2016). The sex differences we

have observed in milk microbiota could therefore be interpreted

as additional evidence supporting the retrograde inoculation hy-

pothesis. Other mechanisms for these sex differences are also

possible, as sex-dependent variations have been observed in

other milk components including calcium, cortisol, and fat (Fujita

et al., 2012; Hinde, 2007; Hinde et al., 2013; Sullivan et al., 2011).

Milk Microbiota and Other Milk Components

Our study uniquely investigated the relationship of milk micro-

biota and other milk components such as fatty acids, maternal

hormones, and HMOs, which may shape the overall milk envi-

ronment and create the niche for the milk microbiota (Williams

et al., 2017). Using RDA, we observed a trend in the association

of milk fatty acid and HMO profiles with milk microbiota compo-

sition. However, using SEM we did not detect a directional or

correlational association of the overall milk environment with

the milk microbiota composition, perhaps because our study

lacked information on other key components of the milk environ-

ment (e.g., immune cells, cytokines, andmicro- andmacro-nutri-

ents). Further research iswarranted to explore the interaction be-

tween milk microbiota and other milk components, and to study

their combined impact on infant development.

Modifiable Maternal Factors and Milk Microbiota

There is great interest in identifying modifiable factors influencing

themilkmicrobiota, with studies to date reporting inconsistent as-

sociations for mode of delivery, maternal diet, and maternal BMI

(Cabrera-Rubio et al., 2012; Li et al., 2017;McGuire andMcGuire,

2017; Sakwinska et al., 2016; Urbaniak et al., 2016). Maternal diet

and BMI are interrelated, and both can modify gut microbiota

composition (Collado et al., 2008; Wu et al., 2011) as well as the

macro- and micro-nutrient profile of human milk (Mazurier et al.,

2017; McGuire et al., 2017), altering the niche for milk microbiota.

Maternal BMI is also positively associatedwithCaesarean section

delivery (Pettersen-Dahl et al., 2018). In our SEM analysis,

maternal diet, maternal BMI, and delivery mode did not directly

affect milk microbiota. However, controlling for the maternal die-

tary pattern as a factor either affecting thematernal BMI or directly

modulating milk fatty acid composition, we observed that BMI

could indirectly (via the effect on the overall milk environment)

influence the milk microbiota. Using RDA, we found that mode

ofdelivery andmaternalBMIwereassociatedwithmilkmicrobiota

in female infants only, although the effect sizeswere small (<2%of

variation explained). We also observed a trend toward lower bac-

terial richness following emergency Caesarean section after con-

trolling for relevant confounding factors. Overall, these associa-

tions were relatively subtle and sex-specific, which may explain

why previous smaller studies have not found a consistent overall

effect of delivery mode on milk microbiota composition.

Strengths and Limitations

The main strength of this study is our unique multi-variable and

multi-methodapproachtoassessing theeffectofdiversematernal,

infant, early-life, and milk factors on the milk microbiota, using the

rich data and large sample size afforded by the CHILD cohort.

Notably, however, the many factors we evaluated collectively ex-

plained less than a third of the total variation observed in milk mi-

crobiota composition, indicating that other unmeasured factors

are contributing to the large inter-individual variation inmilk micro-

biota profiles. Themain limitation of our study is that milk samples

were pooled from multiple feeds and were not collected asepti-

cally. While this collection protocol precludes analysis of potential

diurnal variations and limits our ability to strictly study the milk mi-

crobiota (without skin or other ‘‘contaminants’’), it provides an ac-

curate representation of themicrobiota that infants ingest, which is

arguably more biologically relevant to infant health outcomes.

Although refrigeration could potentially impact themicrobial profile

of the milk samples (Sosa and Barness 1987), we did not find any

association between sample processing time and milk microbiota

composition. We collected a single sample from each mother, so

we could not examine longitudinal changes in milk microbiota

composition over time. Although we identified potential reagent

contaminants at the sequencing step, sequencing results were

not available for DNA extraction negative controls, and thus we

were not able to identify and remove potential contaminants that

might have been introduced during the extraction. Finally, as with

all culture-independent microbiota studies, we could not quantify

bacterial load or confirm the viability of bacteria identified in our

samples (McGuire and McGuire, 2015). As 16S rRNA gene

sequencing has limited capacity to resolve the taxa to species

and strain levels, further metagenomic and/or culturomic studies

are required to confirm and validate the results of this study.

Future Directions

Our results indicate that fixed and modifiable factors can influ-

ence the milk microbiota in a sex-specific manner. Whether

milk provides bacteria to colonize the infant gut or merely pro-

vides selective nutrients to foster a permissive environment is

still an open question. Further investigation is needed to deter-

mine if milk effectively transfers maternal microbiota or simply

enriches and protects the infant oral microbiota for a safe pas-

sage to the infant’s distal gut. Studies are also needed to identify

sources of exogenously derived bacteria; characterize other
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elements of the milk microbiota, including fungi and viruses; and

determine the impact of pumping on themicrobiota of expressed

milk. Finally, the impact of milk microbiota on infant gut micro-

biota development and health remains to be explored and could

have important implications for microbiota-based strategies for

early-life prevention of chronic conditions.

Conclusions

In this large and comprehensive study, we have used multivari-

able approaches to explore many features and potential deter-

minants of human milk microbiota composition. Our results sug-

gest that multiple maternal, infant, and environmental factors

interactively influence milk microbiota composition. Most strik-

ingly, indirect breastfeeding and pump expression were consis-

tently associated with milk microbiota composition, highlighting

the importance of breastfeeding practices. Interesting sex differ-

ences were also identified, as well as potential associations be-

tween microbiota and other milk components. Further research

is warranted to replicate these findings in other populations

and explore their implications for infant health and development.
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STAR+METHODS

KEY RESOURCES TABLE

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Meghan

Azad (meghan.azad@umanitoba.ca).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Inclusion and Exclusion of Study Participants

We studied a representative subset of 428 mothers in the Canadian Healthy Infant Longitudinal Development (CHILD) cohort, a

population-based birth cohort designed to study the developmental origins of pediatric asthma and allergy (Subbarao et al.,

2015). Women with singleton pregnancies were enrolled between 2008 and 2012 (n = 3407) and remained eligible if they deliv-

ered a healthy infant > 35 weeks gestation (n = 3264). For the current study, we selected a representative subset of 428 mother-

infant dyads with available milk samples, ensuring equal representation across the 4 study sites, excluding dyads missing key

maternal (e.g., diet, BMI) or infant (1y clinical) data, and then randomly selecting among the rest (Table S1). This study was

approved by the Human Research Ethics Boards at McMaster University and the Universities of Manitoba, Alberta, Toronto

and British Columbia.

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Breastmilk (1ml) Moraes et al., 2015 CHILD study http://childstudy.ca

Commercial Kits

Quick-DNA Fungal/Bacterial extraction kit Zymo Research Cat# D6005

MiSeq Reagent Kit v3 (600-cycle) Illumina Cat# MS-102-3003

Deposited Data

Raw data This paper 16S rRNA sequence data (NCBI) BioProject:

PRJNA481046, Sequence Read Archive, SRA:

SRP153543

Primers

16S rRNA-Forward Primer 515F:

GTGCCAGCMGCCGCGGTAA

Caporaso et al., 2012 N/A

16S rRNA-Reverse Primer 806R:

GGACTACHVGGGTWTCTAAT

Caporaso et al., 2012 N/A

Software and Algorithms

QIIME2 v.2018.6 Caporaso et al., 2010 https://qiime2.org

Greengenes v. 13.8 DeSantis et al., 2006 http://greengenes.secondgenome.com

Phyloseq v. 1.19.1 McMurdie and Holmes, 2013 https://joey711.github.io/phyloseq/index.html

Decontam v. 1.1.0 (Davis et al., 2018) https://benjjneb.github.io/decontam/vignettes/

decontam_intro.html

MICE v. 2.30 van Buuren and Groothuis-

Oudshoorn, 2011

https://github.com/stefvanbuuren/mice

CoDaSeq v. 0.99.1 Gloor and Reid, 2016 https://github.com/ggloor/CoDaSeq

Vegan v. 2.4-4 Oksanen et al., 2017 https://cran.r-project.org/web/packages/vegan/

vegan.pdf

LEFSe Segata et al., 2011 http://huttenhower.sph.harvard.edu/galaxy/

Lavaan v. 0.5-23.1097 Rosseel, 2012 N/A

R v. 3.3.3 and 3.5.1 R Core Team https://www.r-project.org
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Maternal, Infant and Early-Life Factors

Infant feeding was reported by standardized questionnaire at 3, 6, 12, 18 and 24 months. At the time of sample collection

(3-4 months), breastfeeding status was classified as exclusive (human milk only) or partial (human milk supplemented with infant for-

mula or solid food). Themode of breastmilk feeding was reported for breastfed infants at threemonths of age and classified as ‘‘direct

only’’ (no feeding of pumpedmilk), or ‘‘some indirect’’ (at least one serving of pumpedmilk in the past two weeks) (Klopp et al., 2017).

Maternal age, infant sex, birth weight, gestational age, method of birth, parity, and intrapartum antibiotic use were documented from

hospital records. Mode of delivery was categorised as normal vaginal delivery (NVD), emergency, or elective Caesarean section.

Maternal ethnicity, tobacco smoking, history of asthma diagnosis, and maternal and child intravenous and/or oral antibiotic before

sample collection use were reported by standardized questionnaire. Maternal dietary patterns were determined by principal compo-

nents analysis (PCA) from a modified food frequency questionnaire (de Souza et al., 2016).

METHOD DETAILS

Sample Collection and Processing

Each mother provided one sample of milk at 3-4 months postpartum [mean (SD) 17 (5) weeks postpartum] in a sterile milk container

provided by CHILD study. To control for differences in the milk composition of fore- and hindmilk (Hytten, 1954) as well as the diurnal

variation (Nozad et al., 2012); a mix of foremilk and hindmilk frommultiple feeds during a 24-hour period was collected. Hand expres-

sion was recommended, but pumping was also acceptable. The sample was not collected aseptically. Samples were refrigerated at

home for up to 24 hours before being collected and processed by study staff (Moraes et al., 2015). Samples were stored at �80�C

until analysis. The time between sample pick-up from home and processing by theCHILD laboratory personnel was recorded.We did

not observe any associations of sample processing time with milk microbiota richness, diversity, taxa relative abundance, overall

composition, and cluster membership (not shown).

Milk Microbiota Analysis

Genomic DNA was extracted from 1 mL breastmilk using Quick-DNA Fungal/Bacterial extraction kit following the manufacturer’s

instructions (Zymo Research, USA). The samples were centrifuged (13,000 g at 4�C for 20 min), the fat rim was carefully removed

using a sterile swab, and the supernatant stored for future analysis. Total DNA was extracted from the pellet. Samples were

sequenced following amplification of V4 hypervariable region of the 16S rRNA gene with modified F515/R806 primers (Caporaso

et al., 2012) on a MiSeq platform (Illumina, San Diego, CA, USA) as previously described (Derakhshani et al., 2016). Sterile DNA-

free water was used as negative controls in sequencing library preparation. A mock community consisting of DNA extracted

from of 10 species with known theoretical relative abundances (Zymo Research, USA) were also run as positive control. Over-

lapping paired-end reads were processed with dada2 pipeline (Callahan et al., 2016) using the open-source software QIIME

2 v.2018.6 (https://qiime2.org) (Caporaso et al., 2010). Unique amplicon sequence variants (ASVs) were assigned a taxonomy

and aligned to the 2013 release of the Greengenes reference database at 99% sequence similarity (DeSantis et al., 2006).

Demultiplexed sequencing data was deposited into the Sequence Read Archive (SRA) of NCBI and can be accessed via acces-

sion number SRA: SRP153543.

Analysis of Other Milk Components

Human milk oligosaccharides (HMOs), milk fatty acids (MFA), and milk metabolic hormones (insulin and leptin) were measured in

the samemilk samples. HMO analysis was performed at the University of California, San Diego, as previously described (Fields and

Demerath, 2012). Briefly, raffinose was added to each sample as an internal standard for absolute quantification. HMOs were iso-

lated by high-throughput solid-phase extraction, fluorescently labeled, and analyzed by high-performance liquid chromatography

with fluorescence detection. 19 HMOs were detected and quantified on the basis of retention time comparison with commercial

standard oligosaccharides and mass spectrometry analysis. These 19 HMOs typically account for > 90% of total HMO content;

their concentrations were summed to estimate total HMO concentration. The relative abundance of each HMO was calculated.

Maternal secretor status was defined by the presence of 20-fucosyllactose (20-FL) or lacto-N-fucopentaose (LNFP) (Alderete

et al., 2015). Milk metabolic hormones (leptin and insulin) were measured using the Mesoscale Discovery System at University

of Alberta as previously described (Chan et al., 2018). Briefly, measurements were done in duplicate using kits precoated with

the antibody to each hormone following the manufacturer’s instructions (MesoScale Discovery, Gaithersburg, MD, USA). Results

were measured on the MesoScale Discovery Sector Imager 2400 plate reader and the Discovery Workbench 3.0 software was

used to generate standard curves and calculate analyte concentrations in each sample. MFAs were analyzed by gas liquid chro-

matography at University of Alberta as previously described (Cruz-Hernandez et al., 2013). Briefly, total milk lipids were extracted

using a modified Folch protocol. The total lipid extracted was resuspended in 500 mL fresh hexane and injected into a gas liquid

chromatograph. Fatty acid methyl esters were prepared using HCl/Methanol (3N) as a catalyst followed by gas liquid chromatog-

raphy. An internal triglyceride standard was added to identify the fatty acids and determine their relative concentration. Fatty acids

were identified according to commercial standards 502 and 643 (Nu-Chek Prep, Elysian, MN, USA) and expressed as a relative

percent of total identified fatty acids.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Microbial Data Pre-processing and Reagent Contaminant Removal

Data analysis was conducted in R (R Core Team, 2017). Initial preprocessing of the ASV table was conducted using the Phyloseq

package (McMurdie and Holmes, 2013). Potential reagent contaminants (Salter et al., 2014) were identified using decontam package

based on either the frequency of the ASV in the negative control or the negative correlation with DNA concentration (Davis et al.,

2018). Decontam package could remove 70%–90% of contaminants specifically when the source of contamination was not well-

defined (Karstens et al., 2018). Overall, 9,711 unique ASVs were detected and 173 were identified as contaminants and excluded.

Mock community composition was assessed and agreement with theoretical composition verified (Figure S1D). Samples with

less than 25,000 sequencing reads were excluded (n = 35) and the remaining samples (n = 393) were rarefied to the minimum

25,000 sequencing reads per sample. ASVs only present in the mock community or negative controls (n = 894) and ASVs belonging

to phylum Cyanobacteria, family of mitochondria, and class of chloroplast (n = 240) were removed. ASVs with less than 20 reads

across the entire dataset (n = 6,173) were also removed, resulting in 1,972 remaining ASVs. The contribution of the excluded rare

ASVs to the total reads per sample was deemed negligible (Figure S1E). The numbers of sequencing reads of taxa were then rela-

tivized to the total sum of 25,000. This dataset was used for analysis unless otherwise specified.

Handling Missing Data

Missing data in HMOs (n = 4) andMFA (n = 5) matrices was imputed usingmultivariate imputation by chained equations (MICE) pack-

age (van Buuren and Groothuis-Oudshoorn, 2011). Dimension reduction of ASVs, HMOs, and MFAs was achieved by principal

component analysis (PCA). Samples with missing data for other covariates were excluded from multivariable analyses.

Exclusion of Data

Sequencing reads were excluded if they were deemed to be potential reagent contaminants. Samples were excluded if they had less

than 25,000 sequencing reads. Additionally, samples were excluded from multivariable analyses if they were missing essential co-

variate data.

Linear Association of a Diversity with Maternal, Infant, and Milk Factors

a diversity was assessed by the observed ASVs (richness) and inverse Simpson Index (diversity). Association of a diversity with

maternal, infant, early life, and milk factors was assessed by linear regression adjusting for factors with p value of < 0.05 in univariate

analysis.

Linear Relationships between Taxa Abundance and Maternal, Infant, and Milk Factors

To control for the compositional nature of the data, ASV counts were center log-ratio transformed following zero-replacement

(Gloor and Reid, 2016; Palarea-Albaladejo and Martin-Fernandez, 2015). After this transformation, taxa relative abundances

were compared at species, genus, and phylum levels by one-way analysis of variance (ANOVA). P values were corrected with

Benjamini-Hochberg’s false discovery rate (FDR) method (Benjamini and Hochberg, 1995).

Redundancy Analysis

The association of maternal, infant, early life, and milk factors with milk microbiota composition was assessed by redundancy

analysis (RDA) with 1000 permutations using the vegan package (Oksanen et al., 2017).

Hierarchical Clustering of the Core Microbiota

Hierarchical clustering was performed on Bray-Curtis dissimilarity matrix of core ASVs (n = 12, defined as being present in at least

95% of samples with minimum of 1%mean relative abundance), with ward sum-of-square algorithm. The optimal number of clusters

was determined using Gap statistics, which compares the observed change in within-cluster dispersion versus the expected change

under an appropriate reference null distribution (Tibshirani et al., 2001). Dissimilarity (b diversity) of clusters was assessed by permu-

tational ANOVA (PERMANOVA) using the vegan package (Oksanen et al., 2017). Association of factors with cluster membership was

assessed using ANOVA (Tukey post hoc) for continuous and c2 (post hoc) for categorical variables.

Structural Equation Modeling

Structural equation modeling (SEM) was performed using confirmatory factor analysis (CFA) to assess the direct versus indirect

association of determinant factors of the milk microbiota. SEM was conducted using the lavaan package (Rosseel, 2012) and

path diagrams were visualized using semPlot package (Epskamp and Stuber, 2017). Variable selection was informed by the results

of statistical tests explained above. The milk environment wasmodeled as a latent construct with principal component (PC) 1 axes of

HMOs, MFAs, and hormones as indicators. The milk microbiota PC1 was used as the milk microbiota variable. Multivariate normality

was assessed by Henze-Zirkler’s tests (Korkmaz et al., 2014). Given the non-normality of the data and inclusion of dichotomous cat-

egorical variables, the model was estimated using maximum likelihood (ML) parameter estimation with bootstrapping (n = 1000)

(Kline, 2016). The latent variable was scaled to have variance of one. Model fit was assessed by c2 test, the comparative fix

index (CFI), root mean square error of approximation (RSMEA) and its 90% confidence interval (CI), and the standardized root
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mean residuals (SRMR). Non-significant c2 test, CFIR 0.9, RMSEA < 0.05, and SRMR< 0.08were considered as indications of good

model fit (Kline, 2016). Equivalents of the final model were explored and defined by changing the directionality of associations or

implying co-variation instead of causation.

Linear Discriminant Analysis

Taxa enrichment based on mode of breastfeeding was assessed by linear discriminant analysis (LDA) effect size (LEfSe) with default

parameters and logarithmic LDA score threshold of three (Segata et al., 2011).

Presence/Absence Analysis by Mode of Breastfeeding

Bifidobacterium and Enterobacteriaceae prevalence according to the mode of breastfeeding was assessed by c2 test.

DATA AND SOFTWARE AVAILABILITY

The accession numbers for the 16S rRNA sequence data reported in this paper are BioProject: PRJNA481046 and SRA: SRP153543.
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Table S1. Characteristics of mother-infant dyads from the CHILD cohort included in this 

analysis (n=393) in comparison with all eligible dyads (n=2536) related to STAR Methods. 

Factor   Characteristics 

Mean ± SD or n (%)a 

Subset for 

this study 

N=393 

All eligible 

dyads 

N=2536b 

M
a
te

rn
a
l 

Age (years) 33.0 ± 4.2 32.7 ± 4.2 

Pre-pregnancy BMI (Kg/m2) 24.3 ± 5.2 24.5 ± 6.3 

History of atopy 251 (63.9) 1624 (65.4) 

Secretor status 279 (71.7) 901 (74.7)c 

Ethnicity 

    Caucasian  

    Asian 

    First Nations 

    Other  

 

287 (73.0) 

73 (18.6) 

15 (3.8) 

18 (4.6) 

 

1870 (74.3) 

403 (16.0) 

87 (3.5) 

158 (6.3) 

In
fa

n
t Birth weight (g) 3469 ± 469 3450 ± 479 

Female sex 192 (48.9) 1198 (47.2) 

Gestational age (weeks) 39.2 ± 1.3 39.2 ± 1.2 

E
a
rl

y
 l

if
e 

Mode of delivery 

    Elective C/S 

    Emergency C/S 

    Vaginal 

 

46 (11.9) 

47 (12.1) 

294 (76.0) 

 

264 (10.6) 

339 (13.6) 

1893 (75.8) 

Maternal intrapartum antibiotics 139 (35.8) 996 (39.9) 

Maternal postpartum antibiotics before 3-4 months  41 (10.6) 265 (10.8) 

Child antibiotics before 3-4 months  11 (2.8) 75 (3.1) 

Older siblings 

    None  

    One 

    Two or more 

 

211 (53.7) 

126 (32.1) 

56 (14.2) 

 

1345 (53.1) 

860 (33.9) 

330 (13.0) 

B
re

a
st

fe
ed

in
g
 Lactation stage at sample collection (weeks) 17.3 ± 5.3 16.5 ± 5.0 

Exclusive BF (breast milk only) at sample collection 190 (48.3) 1393 (55.9) 

Direct BF (at the breast) only 162 (41.9) 1018 (40.1) 

Duration of BF (months) 13.2 ± 5.8 12.5 ± 5.6 

Duration of exclusive BF (months) 3.5 ± 2.3 3.7 ± 2.3 

M
il

k
 HMO concentration (mg/mL) 10.2 ± 2.1 10.3 ± 2.1c 

HMO Simpson’s diversity 4.9 ± 1.4 4.9 ± 1.3c 

Insulin (pg/mL)  760 ± 664 Unknown 

Leptin (pg/mL)  556 ± 601 Unknown 
aPercentages are calculated after excluding dyads with missing data. BF, breastfeeding; BMI, 

body mass index; C/S, Caesarean section; HMO, human milk oligosaccharide; NVD, normal 

vaginal delivery 
b Those who breastfed ≥12 weeks and provided a milk sample 
c available for N=1206
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Table S2. Most abundant bacterial genera (>1% mean relative abundance) in the human 

milk microbiota among 393 mothers in the CHILD cohort related to Figure 1.  

Lineage  Genus 
Prevalence 

(%)a 

Relative abundance (%) 

Mean±SD CV Range 

 Firmicutes - Streptococcaceae  Streptococcus 98.7 16.2 ± 16.7 1.0 87.4 

 Firmicutes - Staphylococcaceae  Staphylococcus 99.8 4.9 ± 11.5 2.4 87.5 

 Proteobacteria - Oxalobacteraceae  Ralstonia 99.2 4.8 ± 2.8 0.6 9.4 

 Proteobacteria - Comamonadaceae  Acidovorax 99.5 3.9 ± 2.3 0.6 13.3 

 Proteobacteria - Moraxellaceae  Acinetobacter 48.6 3.7 ± 12.0 3.2 87.3 

 Proteobacteria - Comamonadaceae  Aquabacterium 99.5 3.2 ± 1.9 0.6 7.6 

 Proteobacteria - Oxalobacteraceae  Massilia 99.8 2.4 ± 1.4 0.6 6.5 

 Proteobacteria - Rhizobiaceae  Agrobacterium 99.2 1.9 ± 1.1 0.6 4.5 

 Proteobacteria - Uncl. Alteromonadales  Rheinheimera 99.5 1.9 ± 1.2 0.6 4.7 

 Firmicutes - Veillonellaceae  Veillonella 78.1 1.5 ± 2.7 1.8 21.0 

 Proteobacteria - Neisseriaceae  Vogesella 99.2 1.2 ± 0.7 0.6 3.0 

 Actinobacteria - Nocardioidaceae  Nocardioides 99.2 1.1 ± 0.6 0.6 2.6 

 Proteobacteria - Pseudomonadaceae  Pseudomonas 33.3 1.0 ± 7.2 6.9 72.8 
a Percentage of samples where the taxa was present. 

CV, coefficient of variation; Uncl, unclassified. 
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Table S3. Core milk microbiotaa among 393 mothers in the CHILD cohort in comparison 

to the negative controls related to Figure 1. 

Lineage Genus 

Samples  

(n=393) 

Negative 

controls 

(n=15) 

Mean±SD Maximum Prevalence Prevalence  

 Proteobacteria - Burkholderiales Unclassified  5.86 ± 3.43 12.56 100% 13% 

 Firmicutes - Staphylococcaceae Staphylococcus 4.86 ± 11.5 87.5 100% 20% 

 Proteobacteria - Oxalobacteraceae Ralstonia 4.79 ± 2.76 9.41 100% 7% 

 Proteobacteria - Comamonadaceae Unclassified 4.42 ± 2.58 9.75 100% 7% 

 Proteobacteria - Comamonadaceae Acidovorax 3.95 ± 2.34 13.33 100% 20% 

 Proteobacteria - Oxalobacteraceae Massilia 2.37 ± 1.40 6.47 100% 13% 

 Proteobacteria – Uncl. Alteromonadales Rheinheimera 1.89 ± 1.15 4.74 100% 0 

 Proteobacteria - Rhizobiaceae Agrobacterium 1.85 ± 1.08 4.51 100% 7% 

 Proteobacteria - Rhodospirillaceae Unclassified 1.61 ± 1.07 5.24 100% 7% 

 Proteobacteria - Neisseriaceae Vogesella 1.23 ± 0.74 3.04 100% 0 

 Actinobacteria - Nocardioidaceae Nocardioides 1.09 ± 0.65 2.61 100% 13% 

 Proteobacteria - Burkholderiales Unclassified 1.07 ± 0.64 2.63 100% 0 
a Defined as amplicon sequence variants (ASVs) present in at least 95% of samples with mean 

relative abundance of more than 1% after removing potential reagent contaminants. Uncl, unclassified.
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Table S4. Comparison of milk microbiota composition at family level, by cluster related to 

Figure 1.  

Family  C1 

(n=42) 

C2 

(n=98) 

C3 

(n=161) 

C4 

(n=92) 
q value 

Unclassified Alteromonadales 0.08 ± 0.08 0.85 ± 0.4 2.95 ± 0.6 1.98 ± 0.5 <0.001 

Veillonellaceae 1.18 ± 3.38 2.5 ± 3.8 0.67 ± 1.1 2.2 ± 2.4 c <0.001 

Neisseriaceae 0.06 ± 0.05 0.55 ± 0.3 1.9 ± 0.4 1.29 ± 0.3 <0.001 

Pseudomonadaceae 3.31 ± 11.3 2.40 ± 12.1 0.14 ± 0.9 0.07 ± 0.2 0.007 

Oxalobacteraceae 0.38 ± 0.29 3.27 ± 1.5 11.2 ± 1.5 7.37 ± 1.1 <0.001 

Moraxellaceae 17.8 ± 22.2 6.31 ± 15.6 0.18 ± 1.2 0.75 ± 2.9 <0.001 

Enterobacteriaceae 7.6 ± 13.9 1.59 ± 4.9 0.31 ± 1.8 0.41 ± 1.8 <0.001 

Comamonadaceae 0.9 ± 2.1 5.20 ± 2.4 17.9 ± 2.3 11.9 ± 1.8 <0.001 

Rhizobiaceae 0.1 ± 0.1 0.85 ± 0.38 2.9 ± 0.5 1.91 ± 0.4 <0.001 

Nocardioidaceae 0.06 ± 0.06 0.49 ± 0.23 1.7 ± 0.3 1.13 ± 0.2 <0.001 

Streptococcaceae 7.1 ± 17.8 22.8 ± 22.8 9.45 ± 7.2 25.1 ± 12.6 <0.001 

Staphylococcaceae 1.3 ± 2.1 11.0 ± 20.8 2.48 ± 3.3 4.12 ± 5.6 <0.001 

Other 60.0 ± 26.8 41.5 ± 22.8 45.6 ± 4.8 40.2 ± 9.9 - 

Families with >1% overall mean relative abundance are shown. Relative abundances of dominant families 

within each cluster are in bold. Data is presented as mean ± SD. Relative abundances were compared by 

one-way analysis of variance (ANOVA).  
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Table S5. Univariate associations of maternal and infant factors with milk microbiota composition and 

cluster membership among 393 dyads in the CHILD cohort related to Figure 1. p values <0.05 are in 

bold. Data are presented as mean±SD. 

Factor  

Microbiota Cluster Membership a 

C1 

(n = 42) 

C2 

(n = 98) 

C3 

(n = 161) 

C4 

(n = 92)  

Overall  

p-value 

BMI (Kg/m2) 25.8 ± 7.4 24.6 ± 4.8 24.2 ± 4.7 23.8 ± 4.5 0.17 

Secretor status, n (%) 

    Secretor  

    Non-secretor 

 

30 (71.4) 

12 (28.6) 

 

76 (79.2) 

20 (20.8) 

 

104 (65.4) 

55 (34.6) 

 

69 (75.0) 

23 (25.0) 

0.10 

Ethnicity, n (%) 

    Asian 

    Caucasian  

    First Nation 

    Other  

 

6 (14.2) 

33 (78.6) 

1 (2.4) 

2 (4.8) 

 

21 (21.4) 

68 (69.4) 

5 (5.1) 

4 (4.1) 

 

36 (22.4) 

112 (69.6) 

6 (3.7) 

7 (4.3) 

 

10 (10.9) 

74 (80.4) 

3 (3.3) 

5 (5.4) 

0.61 

Lactation stage at sample collection (weeks) 17.6 ± 5.2 17.7 ± 6.16 16.8 ± 4.9 17.5 ± 5.3 0.51 

Mode of breastfeeding, n (%) 

    Indirect 

    Direct 

 

36 (85.7) 

6 (14.3) cde 

 

63 (65.6) 

33 (34.4) cfg 

 

83 (52.5) 

75 (47.5) dg 

43 (47.3) 

48 (52.7) ef 
<0.001 

Milk expression b 

    Manual 

    Pump  

 

1 (6.3) 

15 (93.7) 

 

6 (19.4) 

25 (80.6) 

 

9 (29.6) 

31 (70.4) 

 

4 (16.7) 

20 (83.3) 

0.54 

Exclusive breastfeeding at sample collection, n (%) 

    No 

    Yes  

 

29 (69.1) 

13 (30.9) g 

 

54 (55.1) 

44 (44.9) 

 

74 (46.0) 

87 (54.0) g 

 

46 (50.0) 

46 (50.0) 

0.052 

Total HMO (mg/mL) 9.9 ± 1.9 10.6 ± 2.1 10.1 ± 2.1 10.2 ± 2.2 0.18 

Insulin (pg/mL)  741 ± 591 788 ± 552 748 ± 687 760 ± 765 0.97 

Leptin (pg/mL)  612 ± 615 564 ± 581 554 ± 604 528 ± 617 0.91 

Number of older siblings, n (%) 

    None 

    One 

    Two or more 

 

30 (71.4) 

9 (21.4) 

3 (7.2) gh 

 

54 (55.1) 

31 (31.6) 

13 (13.3) 

 

81 (50.3) 

55 (34.2) 

25 (15.5) g 

 

46 (50.0) 

31 (33.7) 

15 (16.3) h 

0.08 

Infant sex 

    Female 

    Male  

 

17 (40.5) 

25 (59.5) 

 

46 (46.9) 

52 (53.1) 

 

90 (55.9) 

71 (44.1) 

 

39 (42.4) 

53 (57.6) 

0.11 

Mode of delivery 

    Vaginal 

    Caesarean section - emergency 

    Caesarean section - elective 

 

29 (69.1) 

9 (21.4) 

4 (9.5) 

 

68 (80.0) 

11 (12.9) 

6 (7.1) 

 

127 (79.3) 

19 (11.9) 

14 (8.8) 

 

70 (77.8) 

8 (8.9) 

12 (13.3) 

0.22 

a Associations were tested by ANOVA (Tukey post hoc) for continuous and χ2 (post hoc) for categorical variables. 
b n= 112. Method of milk expression was not systematically captured, but was analyzed for samples where it was noted. 

The frequency is calculated in the subset with available data. 
c, d, e, f p<0.05 for overall and pairwise comparison of clusters. gh p<0.1. Same superscript denotes pairwise significant 

difference. 

Not Shown: Maternal age, history of atopy, infant birth weight, gestational age, intrapartum antibiotics, and antibiotics 

before the time of sample collection by mother or child were not significantly associated with the clusters. BMI, body mass 

index; HMO, human milk oligosaccharide 
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Table S6. Factors not associated with milk microbiota α diversity among 393 mothers in 

the CHILD cohort related to Table 1. 

Factor  n (%) 
Observed 

ASVs 

Inverse 

Simpson 

Maternal age (years) 

    20-30  

    30-40  

    > 40 

 

100 (25.3) 

270 (68.4) 

25 (6.3) 

 

149 ± 43 

147 ± 44 

140 ± 42 

 

16.1 ± 9.0 

15.8 ± 8.7 

14.5 ± 9.7 

Maternal weight class 

    Normal  

    Overweight/obese  

 

260 (65.8) 

135 (34.2) 

      

147 ± 43 

146 ± 45 

 

15.9 ± 8.8 

15.6 ± 8.9 

Maternal ethnicity 

    Caucasian  

    Asian 

    First Nation 

    Other 

 

276 (73.6) 

70 (18.7) 

15 (4.0) 

14 (3.7) 

 

148 ± 45 

139 ± 38 

148 ± 56 

153 ± 33 

 

15.9 ± 8.9 

15.3 ± 8.5 

16.4 ± 10.5 

16.0 ± 7.4 

Maternal atopy 

    No  

    Yes  

 

134 (35.7) 

241 (64.3) 

 

142 ± 44 

150 ± 43 

 

15.2 ± 9.1 

16.1 ± 8.7 

Maternal secretor status  

    Secretor  

    Non-secretor 

 

269 (71.7) 

106 (28.3) 

 

147 ± 43 

145 ± 40 

 

15.4 ± 8.8 

16.6 ± 8.7 

Maternal ever smoking 

   No  

   Yes  

 

307 (77.7) 

88 (22.3) 

 

147 ± 42 

145 ± 48 

 

15.9 ± 8.8 

15.4 ± 9.2 

Maternal prenatal smoking 

    No 

    Yes  

 

377 (95.4) 

18 (4.6) 

 

147 ± 43 

140 ± 61 

 

15.9 ± 8.9 

12.6 ± 8.3 

Lactation stage (weeks) 

    10-15  

    15-21 

    21-27 

    27-32 

    >32  

 

175 (44.5) 

133 (33.8) 

56 (14.2) 

21 (5.4) 

8 (2.1)  

 

149 ± 45 

144 ± 39 

142 ± 47 

152 ± 50 

144 ± 26 

 

16.1 ± 8.9 

15.4 ± 8.8 

14.9 ± 8.9 

17.5 ± 9.6 

14.2  ± 5.5 

Univariate linear regression, all p > 0.05 

Sample processing time, HMO diversity, or total HMO concentration were also not significantly 

associated with α diversity (not shown).
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Table S7. Comparison the equivalent models of the final structural equation model related 

to Figure 4. See also Figure S5.  

Model Difference from final model Df χ2 p value CFI RMSEA  

(90% CI) 

SRMR AIC 

Final 

model 

Causative effect of milk on 

microbiota 
40 0.247 0.985 

0.019  

(0.00 – 0.042) 
0.040 11401 

A 
Causative effect of microbiota on 

milk 
40 0.251 0.985 

0.019 

(0.00 – 0.042) 
0.040 11401 

B 
Milk environment and microbiota 

correlation 
40 0.247 0.985 

0.019 

(0.00 – 0.042) 
0.040 11401 

C Effect of BMI on milk removed 41 < 0.001 0.404 
0.119  

(0.106 – 0.133) 
0.108 11614 

D 
Effect of mode of breastfeeding on 

the milk environment 
40 0.028 0.949 

0.035 

(0.012 – 0.054) 
0.046 11414 

E Effect of maternal diet on MFA 38 0.210 0.982 
0.022 

(0.00 – 0.044) 
0.040 11404 

F Direct effect of HMO on microbiota 39 0.241 0.984 
0.020 

(0.00 – 0.043) 
0.040 11402 

AIC, Akaike information criterion; BMI, body mass index; CFI, comparative fix index; CI, confidence interval; 

HMO, human milk oligosaccharide; MFA, milk fatty acid; RSMEA, root mean square error of approximation; 

SRMR, standardized root mean residuals.  

Indications of poor model fit are in bold: χ2 p-value <0.05, CFI <0.9,  RMSEA > 0.05, and SRMR>0.08  
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Figure S1. Data quality control related to STAR Methods. A) Milk microbiota β diversity by 

sample type, sequencing run, and PCR plates, prior to removal of potential contaminant ASVs 

using the decontam package. β diversity was assessed on Bray-Curtis dissimilarity and tested by 

PERMANOVA. There was a significant difference based on sample type but not sequencing 

runs or PCR plates. Comparison of B) Sequencing depth and C) Composition of the top 500 

most abundant ASVs before and after contaminant removal. D) Relative abundance of most 

abundant bacterial genera (>1% mean relative abundance) in the mock community in comparison 

with the theoretical composition, each bar represents a replicate. E) Sequencing output 

processing to remove low abundance ASVs. The 393 individual samples are on the X axis and 

relative abundances of the sums of sequence reads per sample are plotted along the Y axis. The 

initial ASV table following contaminant removal contained 8145 ASVs. Following exclusion of 

ASVs with less than 20 reads across the entire dataset, 1,972 ASVs remained. Exclusion of 

ASVs with less than 0.01% and 1% relative abundance resulted in 301 and 22 remaining ASVs, 

respectively. Analyses have been performed on the 1,972 ASVs with >20 reads in total, unless 

stated otherwise. N samples = 428, N mock =18, N negative control =15, 
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Figure S2. Hierarchical clustering of core milk microbiota among 393 mothers in the 

CHILD cohort related to Figure 1. The optimum numbers of clusters in our data were 

determined by Gap statistics. According to the gap statistics, there are four main clusters. A) Gap 

statistics plot, B) heterogeneity of clusters in terms of the milk microbiota compositional 

dispersion, C) PCoA plot on Bray-Curtis dissimilarity among ASVs with more than 0.01% mean 

relative abundance (n=301). β diversity between clusters was assessed by PERMANOVA; p-

values are shown in panels B and C.  

 

A)

B)

C)
ASVs > 0.01% mean relative abundance

p overall < 0.001

p pairwise < 0.001

R2 = 0.33
p overall < 0.001
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Figure S3. Equivalent structural equation models assessing other potentially plausible 

models of associations of milk microbiota determinants among 393 mothers in the CHILD 

cohort related to Figure 4. Compared to the final model depicted in Figure 3B, these models 

assessed: A) causative effect of milk microbiota on milk environment, B) correlation of milk 

microbiota and milk microenvironment, C) only direct effect of BMI on milk microbiota 

retained, D) effect of mode of breastfeeding on the milk environment, E) maternal diet effect on 

milk fatty acids, F) direct effect of HMOs on milk microbiota. Standardized β coefficients are 
reported. Abbreviations: mlk, milk environment; MFA, milk fatty acid PC1; INS, insulin; LEP, 

leptin; HMO, human milk oligosaccharide PC1; microbiota, milk microbiota PC1; BMI, 

maternal body mass; DEL, mode of delivery; SEX, infant sex; MOD: mode of breastfeeding; 

DRC1 and DRC2, maternal diet PC1 and PC2. * p<0.05, ** p<0.01. Green (positive), red 

(negative). See also Table S7.  
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Figure S4. Expressed milk microbiota is influenced by collection method related to Figure 

5. A) α diversity, B) β diversity.  
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